skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kiehl, Douglas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent years, there is an increasing interest in noninvasive treatments for neurological disorders like Alzheimer and Depression. Transcranial magnetic stimulation (TMS) is one of the most effective methods used for this purpose. The performance of TMS highly depends on the coils used for the generation of magnetic field and induced electric field particularly their designs affecting depth and focality tradeoff characteristics. Among a variety of proposed and used TMS coil designs, circular coils are commonly used both in research and medical and clinical applications. In current study, we focus on changing the outer and inner sizes (diameter) and winding turns of ring coils and try to reach deeper brain regions without significant field strength decay. The induced electric field and the decay rate of the generated field with depth were studied with finite element method calculations. The results of the performed simulations indicate that larger diameter coils have a larger equivalent field emission aperture and produce larger footprint of induced electric field initially. However, their emission solid angles are smaller and, as a result, the field divergence or the decay rates of the generated field with depth are smaller as well, which give them a good potential to perform better for deep brain stimulation compared with that of smaller coil. 
    more » « less
  2. Electroencephalogram (EEG) recording is a widely used method to measure electrical activity in the brain. Rodent EEG brain recording not only is noninvasive but also has the advantages to accomplish full brain monitoring, compared with that of the invasive techniques like micro-electrode-arrays. In comparison to other noninvasive recording techniques, EEG is the only technique that can achieve sub-ms scale time resolution, which is essential to obtain causal relationship. In this work, we demonstrated a simple microfabrication process for developing a high-density polyimide-based rodent EEG recording cap. A 34-channel rodent electrode array with a total size of 11mmx8mm, individual electrode diameter 240μm and interconnect wire linewidth 35μm was designed and fabricated. For the fabrication process, we first deposit 350nm SiO2 on a silicon substrate. We then fabricate 6-7μm thick first layer polyimide caps with fingers and contact holes. Gold deposition and then lithography etching of 34 channel contact-electrodes and their interconnects were fabricated in the second step. The third step was to cover metal interconnects with a 10μm thick second layer polyimide, which was fabricated with photolithography before the final film released by HF undercutting etching of SiO2 layer. Then the fabricated EEG cap is interfaced with a commercial 34-channel female connector, which is soldered with 34-line wires. These wires are then connected to an ADC to record the EEG data in computer for post-processing. With polyimide, the EEG cap is biocompatible, and flexible which makes it suitable for good contact with rodent skulls. 
    more » « less